We have investigated the efficiency and limits of polarization dependent hard X-ray photoelectron spectroscopy (HAXPES) in order to establish how well this method can be used to unravel quantitatively the contributions of the orbitals forming the valence band of solids. By rotating the energy analyzer rather than the polarization vector of the light using a phase retarder, we obtained the advantage that the full polarization of the light is available for the investigation. Using NiO, ZnO, and Cu2O as examples for solid state materials, we established that the polarization dependence is much larger than in photoemission experiments utilizing ultra-violet or soft X-ray light. Yet we also have discovered that the polarization dependence is less than complete on the basis of atomic calculations, strongly suggesting that the trajectories of the outgoing electrons are affected by appreciable side-scattering processes even at these high kinetic energies. We have found in our experiment that these can be effectively described as a directional spread of +/- 18 degrees of the photoelectrons. This knowledge allows us to identify, for example, reliably the Ni 3d spectral weight of the NiO valence band and at the same time to demonstrate the importance of the Ni 4s for the chemical stability of the compound. (C) 2014 Elsevier B.V. All rights reserved.

Weinen, J., Koethe T., C., Chang C., F., Agrestini, S., Kasinathan, D., Liao Y., F., et al. (2015). Polarization dependent hard X-ray photoemission experiments for solids: Efficiency and limits for unraveling the orbital character of the valence band. JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 198, 6-11 [10.1016/j.elspec.2014.11.003].

Polarization dependent hard X-ray photoemission experiments for solids: Efficiency and limits for unraveling the orbital character of the valence band

OFFI, FRANCESCO;
2015

Abstract

We have investigated the efficiency and limits of polarization dependent hard X-ray photoelectron spectroscopy (HAXPES) in order to establish how well this method can be used to unravel quantitatively the contributions of the orbitals forming the valence band of solids. By rotating the energy analyzer rather than the polarization vector of the light using a phase retarder, we obtained the advantage that the full polarization of the light is available for the investigation. Using NiO, ZnO, and Cu2O as examples for solid state materials, we established that the polarization dependence is much larger than in photoemission experiments utilizing ultra-violet or soft X-ray light. Yet we also have discovered that the polarization dependence is less than complete on the basis of atomic calculations, strongly suggesting that the trajectories of the outgoing electrons are affected by appreciable side-scattering processes even at these high kinetic energies. We have found in our experiment that these can be effectively described as a directional spread of +/- 18 degrees of the photoelectrons. This knowledge allows us to identify, for example, reliably the Ni 3d spectral weight of the NiO valence band and at the same time to demonstrate the importance of the Ni 4s for the chemical stability of the compound. (C) 2014 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/118882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact