Co nanoclusters were synthesized by an inverse-micelle chemical route. The magnetic and microstructural properties of the nanoparticles have been analyzed as a function of the surfactant (AOT and DEHP) and the drying method. Microstructural analysis has been performed by TEM and XANES; magnetic properties have been studied by hysteresis loops and zero-field cooling – field cooling (ZFC-FC) curves. TEM images show 2 to 4 nm sized particles spherical in shape. XANES measurements point out a significant presence of Co3O4with metallic Co and some Co2+ bound to the surfactant. The presence of antiferromagnetic Co3O4 explains the magnetic transition observed at low T in both ZFC-FC measurements and hysteresis loops. Finally, the presence of magnetic interactions explains the bigger effective cluster size obtained from hysteresis loops fits (6-10 nm) compared to the sizes observed by TEM (2-4 nm).
R., T., Meneghini, C., Mobilio, S., G., C., A., G.P., J., A., et al. (2010). Magnetic properties of colloidal cobalt nanoclusters. JOURNAL OF PHYSICS. CONFERENCE SERIES, 200, 072100-072104 [10.1088/1742-6596/200/7/072100].
Magnetic properties of colloidal cobalt nanoclusters
MENEGHINI, CARLO;MOBILIO, Settimio;
2010-01-01
Abstract
Co nanoclusters were synthesized by an inverse-micelle chemical route. The magnetic and microstructural properties of the nanoparticles have been analyzed as a function of the surfactant (AOT and DEHP) and the drying method. Microstructural analysis has been performed by TEM and XANES; magnetic properties have been studied by hysteresis loops and zero-field cooling – field cooling (ZFC-FC) curves. TEM images show 2 to 4 nm sized particles spherical in shape. XANES measurements point out a significant presence of Co3O4with metallic Co and some Co2+ bound to the surfactant. The presence of antiferromagnetic Co3O4 explains the magnetic transition observed at low T in both ZFC-FC measurements and hysteresis loops. Finally, the presence of magnetic interactions explains the bigger effective cluster size obtained from hysteresis loops fits (6-10 nm) compared to the sizes observed by TEM (2-4 nm).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.