We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schrodinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schrodinger equation.

Heredero, R.h., Levi, D., Petrera, M., Scimiterna, C. (2008). Multiscale Expansion and Integrability Properties of the Lattice Potential KdV Equation. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 15, 323-333 [10.2991/jnmp.2008.15.s3.31].

Multiscale Expansion and Integrability Properties of the Lattice Potential KdV Equation

LEVI, Decio;
2008-01-01

Abstract

We apply the discrete multiscale expansion to the Lax pair and to the first few symmetries of the lattice potential Korteweg-de Vries equation. From these calculations we show that, like the lowest order secularity conditions give a nonlinear Schrodinger equation, the Lax pair gives at the same order the Zakharov and Shabat spectral problem and the symmetries the hierarchy of point and generalized symmetries of the nonlinear Schrodinger equation.
2008
Heredero, R.h., Levi, D., Petrera, M., Scimiterna, C. (2008). Multiscale Expansion and Integrability Properties of the Lattice Potential KdV Equation. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 15, 323-333 [10.2991/jnmp.2008.15.s3.31].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/119876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact