It is shown that the 2-dimensional Toda equation can be decomposed into two integrable differential-difference equations, thus implying that we can associate to it a triad of linear problems. Using this same trick we construct new 2-dimensional differential-difference equations with exponential interactions.

Levi, D., Ragnisco, O., Shabat, A.b. (1994). CONSTRUCTION OF HIGHER LOCAL (2+1)-DIMENSIONAL EXPONENTIAL LATTICE EQUATIONS. CANADIAN JOURNAL OF PHYSICS, 72(7-8), 439-441.

CONSTRUCTION OF HIGHER LOCAL (2+1)-DIMENSIONAL EXPONENTIAL LATTICE EQUATIONS

LEVI, Decio;RAGNISCO, Orlando;
1994-01-01

Abstract

It is shown that the 2-dimensional Toda equation can be decomposed into two integrable differential-difference equations, thus implying that we can associate to it a triad of linear problems. Using this same trick we construct new 2-dimensional differential-difference equations with exponential interactions.
1994
Levi, D., Ragnisco, O., Shabat, A.b. (1994). CONSTRUCTION OF HIGHER LOCAL (2+1)-DIMENSIONAL EXPONENTIAL LATTICE EQUATIONS. CANADIAN JOURNAL OF PHYSICS, 72(7-8), 439-441.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/120703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 3
social impact