Despite the relevance of carbohydrates as cues in eliciting specific biological responses, the covalent surface modification of collagen-based matrices with small carbohydrate epitopes has been scarcely investigated. We report thereby the development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol−ene approach, between alkene-derived monosaccharides and the thiol-functionalized material surface. Synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), Fourier transform-infrared (FT-IR), and enzyme-linked lectin assay (ELLA) confirmed the effectiveness of the collagen neoglycosylation. Preliminary biological evaluation in osteoarthritic models is reported. The proposed methodology can be extended to any thiolated surface for the development of smart biomaterials for innovative approaches in regenerative medicine.

Russo, L., Battocchio, C., Secchi, V., Magnano, E., Nappini, S., Taraballi, F., et al. (2014). Thiol-ene mediated neoglycosylation of collagen patches: a preliminary study. LANGMUIR, 30, 1336-1342 [10.1021/la404310p].

Thiol-ene mediated neoglycosylation of collagen patches: a preliminary study

BATTOCCHIO, CHIARA;SECCHI, VALERIA;
2014-01-01

Abstract

Despite the relevance of carbohydrates as cues in eliciting specific biological responses, the covalent surface modification of collagen-based matrices with small carbohydrate epitopes has been scarcely investigated. We report thereby the development of an efficient procedure for the chemoselective neoglycosylation of collagen matrices (patches) via a thiol−ene approach, between alkene-derived monosaccharides and the thiol-functionalized material surface. Synchrotron radiation-induced X-ray photoelectron spectroscopy (SR-XPS), Fourier transform-infrared (FT-IR), and enzyme-linked lectin assay (ELLA) confirmed the effectiveness of the collagen neoglycosylation. Preliminary biological evaluation in osteoarthritic models is reported. The proposed methodology can be extended to any thiolated surface for the development of smart biomaterials for innovative approaches in regenerative medicine.
2014
Russo, L., Battocchio, C., Secchi, V., Magnano, E., Nappini, S., Taraballi, F., et al. (2014). Thiol-ene mediated neoglycosylation of collagen patches: a preliminary study. LANGMUIR, 30, 1336-1342 [10.1021/la404310p].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/120856
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact