Stability properties for solutions of $-\Delta_m(u)=f(u)$ in $\mathbb{R}^N$ are investigated, where $N\geq 2$ and $m \geq 2$. The aim is to identify a critical dimension $N^\#$ so that every non-constant solution is linearly unstable whenever $2\leq N<N^\#$. For positive, increasing and convex nonlinearities $f(u)$, global bounds on $\frac{f \, f''}{(f')^2}$ allows us to find a dimension $N^\#$, which is optimal for exponential and power nonlinearities. In the radial setting we can deal more generally with $C^1-$nonlinearities and the dimension $N^\#$ we find is still optimal.

Castorina, D., Esposito, P., Sciunzi, B. (2009). Low dimensional instability for semilinear and quasilinear problems in R^N. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 8(6), 1779-1793 [10.3934/cpaa.2009.8.1779].

Low dimensional instability for semilinear and quasilinear problems in R^N

ESPOSITO, PIERPAOLO;
2009-01-01

Abstract

Stability properties for solutions of $-\Delta_m(u)=f(u)$ in $\mathbb{R}^N$ are investigated, where $N\geq 2$ and $m \geq 2$. The aim is to identify a critical dimension $N^\#$ so that every non-constant solution is linearly unstable whenever $2\leq N
2009
Castorina, D., Esposito, P., Sciunzi, B. (2009). Low dimensional instability for semilinear and quasilinear problems in R^N. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 8(6), 1779-1793 [10.3934/cpaa.2009.8.1779].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/121056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact