In this paper we consider the problem of finding three-dimensional orthogonal drawings of maximum degree six graphs from the computational complexity perspective. We introduce a 3SAT reduction framework that can be used to prove the NP-hardness of finding three-dimensional orthogonal drawings with specific constraints. By using the framework we show that, given a three-dimensional orthogonal shape of a graph (a description of the sequence of axis-parallel segments of each edge), finding the coordinates for nodes and bends such that the drawing has no intersection is NP-complete. Conversely, we show that if node coordinates are fixed, finding a shape for the edges that is compatible with a non-intersecting drawing is a feasible problem, which becomes NP-complete if a maximum of two bends per edge is allowed. We comment on the impact of these results on the two open problems of determining whether a graph always admits a drawing with at most two bends per edge and of characterizing orthogonal shapes admitting an orthogonal drawing without intersections. -

Patrignani, M. (2008). Complexity Results for Three-dimensional Orthogonal Graph Drawing. JOURNAL OF DISCRETE ALGORITHMS, 6, 140-161 [10.1016/j.jda.2006.06.002].

Complexity Results for Three-dimensional Orthogonal Graph Drawing

PATRIGNANI, Maurizio
2008-01-01

Abstract

In this paper we consider the problem of finding three-dimensional orthogonal drawings of maximum degree six graphs from the computational complexity perspective. We introduce a 3SAT reduction framework that can be used to prove the NP-hardness of finding three-dimensional orthogonal drawings with specific constraints. By using the framework we show that, given a three-dimensional orthogonal shape of a graph (a description of the sequence of axis-parallel segments of each edge), finding the coordinates for nodes and bends such that the drawing has no intersection is NP-complete. Conversely, we show that if node coordinates are fixed, finding a shape for the edges that is compatible with a non-intersecting drawing is a feasible problem, which becomes NP-complete if a maximum of two bends per edge is allowed. We comment on the impact of these results on the two open problems of determining whether a graph always admits a drawing with at most two bends per edge and of characterizing orthogonal shapes admitting an orthogonal drawing without intersections. -
2008
Patrignani, M. (2008). Complexity Results for Three-dimensional Orthogonal Graph Drawing. JOURNAL OF DISCRETE ALGORITHMS, 6, 140-161 [10.1016/j.jda.2006.06.002].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/121488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact