We review lattice results related to pion, kaon, D - and B -meson physics with the aim of making them easily accessible to the particle-physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) , arising in semileptonic K→π transition at zero momentum transfer, as well as the decay-constant ratio fK/fπ of decay constants and its consequences for the CKM matrix elements Vus and Vud . Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L×SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory and review the determination of the BK parameter of neutral kaon mixing. The inclusion of heavy-quark quantities significantly expands the FLAG scope with respect to the previous review. Therefore, we focus here on D - and B -meson decay constants, form factors, and mixing parameters, since these are most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. In addition we review the status of lattice determinations of the strong coupling constant αs.
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in the semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant alpha_s.
Aoki, S., Aoki, Y., Bernard, C., Blum, T., Colangelo, G., Della Morte, M., et al. (2014). Review of lattice results concerning low-energy particle physics. EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 74(7), 2890 [10.1140/epjc/s10052-014-2890-7].
Review of lattice results concerning low-energy particle physics
LUBICZ, Vittorio;
2014-01-01
Abstract
We review lattice results related to pion, kaon, D- and B-meson physics with the aim of making them easily accessible to the particle physics community. More specifically, we report on the determination of the light-quark masses, the form factor f+(0), arising in the semileptonic K -> pi transition at zero momentum transfer, as well as the decay constant ratio fK/fpi and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)LxSU(2)R and SU(3)LxSU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. The latter quantities are an addition compared to the previous review. For the heavy-quark sector, we provide results for mc and mb (also new compared to the previous review), as well as those for D- and B-meson decay constants, form factors, and mixing parameters. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. Finally, we review the status of lattice determinations of the strong coupling constant alpha_s.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.