Measurements of the double-differential pi(+/-) production cross section in the range of momentum 100 <= p <= 800 MeV/c and angle 0.35 <=theta <= 2.15 rad using pi(+/-) beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d(2)sigma/dp d theta at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.
Apollonio, M., Artamonov, A., Bagulya, A., Barr, G., Blondel, A., Bobisut, F., et al. (2009). Large-angle production of charged pions with incident pion beams on nuclear targets. PHYSICAL REVIEW. C, NUCLEAR PHYSICS, 80(6) [10.1103/PhysRevC.80.065207].
Large-angle production of charged pions with incident pion beams on nuclear targets
ORESTANO, DOMIZIA;
2009-01-01
Abstract
Measurements of the double-differential pi(+/-) production cross section in the range of momentum 100 <= p <= 800 MeV/c and angle 0.35 <=theta <= 2.15 rad using pi(+/-) beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d(2)sigma/dp d theta at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.