A drawing of a graph is a monotone drawing if for every pair of vertices u and v there is a path drawn from u to v that is monotone in some direction. In this paper we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar embedding of the graph is given as part of the input that must be preserved by the drawing algorithm. In this setting we prove that every planar graph on n vertices admits a planar monotone drawing with at most two bends per edge and with at most 4n-10 bends in total; such a drawing can be computed in linear time and requires polynomial area. We also show that two bends per edge are sometimes necessary on a linear number of edges of the graph. Furthermore, we investigate subclasses of planar graphs that can be realized as embedding-preserving monotone drawings with straight-line edges. In fact, we prove that biconnected embedded planar graphs and outerplane graphs always admit such drawings, and describe linear-time drawing algorithms for these two graph classes. -

PATRIZIO ANGELINI, Walter DIDIMO, Stephen KOBOUROV, Tamara MCHEDLIDZE, VINCENZO ROSELLI, Antonios SYMVONIS, et al. (2013). Monotone Drawings of Graphs with Fixed Embedding. ALGORITHMICA, 1-25 [10.1007/s00453-013-9790-3].

Monotone Drawings of Graphs with Fixed Embedding

ANGELINI, PATRIZIO;ROSELLI, VINCENZO;
2013

Abstract

A drawing of a graph is a monotone drawing if for every pair of vertices u and v there is a path drawn from u to v that is monotone in some direction. In this paper we investigate planar monotone drawings in the fixed embedding setting, i.e., a planar embedding of the graph is given as part of the input that must be preserved by the drawing algorithm. In this setting we prove that every planar graph on n vertices admits a planar monotone drawing with at most two bends per edge and with at most 4n-10 bends in total; such a drawing can be computed in linear time and requires polynomial area. We also show that two bends per edge are sometimes necessary on a linear number of edges of the graph. Furthermore, we investigate subclasses of planar graphs that can be realized as embedding-preserving monotone drawings with straight-line edges. In fact, we prove that biconnected embedded planar graphs and outerplane graphs always admit such drawings, and describe linear-time drawing algorithms for these two graph classes. -
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/132088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact