We consider semi-discrete approximations of optimal control problems for linear distributed parameter dynamical systems, with cost functionals in Bolza or infinite horizon form. We give conditions for the convergence of approximate value functions and prove that the approximate optimal controls are a minimizing sequence for the continuous problem. We also show some concrete applications.

FERRETTI R (1997). Internal Approximation Schemes for Optimal Control Problems in Hilbert Spaces. JOURNAL OF MATHEMATICAL SYSTEMS, ESTIMATION, AND CONTROL, 7(1), 1-25.

Internal Approximation Schemes for Optimal Control Problems in Hilbert Spaces

FERRETTI, Roberto
1997

Abstract

We consider semi-discrete approximations of optimal control problems for linear distributed parameter dynamical systems, with cost functionals in Bolza or infinite horizon form. We give conditions for the convergence of approximate value functions and prove that the approximate optimal controls are a minimizing sequence for the continuous problem. We also show some concrete applications.
FERRETTI R (1997). Internal Approximation Schemes for Optimal Control Problems in Hilbert Spaces. JOURNAL OF MATHEMATICAL SYSTEMS, ESTIMATION, AND CONTROL, 7(1), 1-25.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/132490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact