Let K be a field, and let A be a subring of K. We consider properties and applications of a compact, Hausdorff topology called the "ultrafilter topology" defined on the space Zar(K pipe A) of all valuation domains having K as quotient field and containing A. We show that the ultrafilter topology coincides with the constructible topology on the abstract Riemann-Zariski surface Zar(K pipe A). We extend results regarding distinguished spectral topologies on spaces of valuation domains. © 2013 Copyright Taylor and Francis Group, LLC.
Finocchiaro C, Fontana M, & Loper A. (2013). Ultrafilter and constructible topologies on spaces of valuation domains. COMMUNICATIONS IN ALGEBRA, 41(5), 1825-1835 [10.1080/00927872.2011.651760].
Titolo: | Ultrafilter and constructible topologies on spaces of valuation domains | |
Autori: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Citazione: | Finocchiaro C, Fontana M, & Loper A. (2013). Ultrafilter and constructible topologies on spaces of valuation domains. COMMUNICATIONS IN ALGEBRA, 41(5), 1825-1835 [10.1080/00927872.2011.651760]. | |
Handle: | http://hdl.handle.net/11590/134794 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |