Weniger transformation is a powerful nonlinear sequence transformation that, when applied to the sequence of the partial sums of a divergent or a slowly convergent series, can convert it to a fast-converging sequence. Weniger transformation is not yet well known in optics. Diffraction catastrophes are fundamental tools for evaluating an optical field in proximity to caustics and singularities. The action of the Weniger transformation on the power series representation of diffraction catastrophes is numerically studied for two particular cases, corresponding to the Airy and the Pearcey functions. The obtained results clearly show that Weniger transformation could become a computational tool of great importance for summing several types of series expansions in optics. (c) 2007 Optical Society of America.

Borghi, R. (2007). Evaluation of diffraction catastrophes by using Weniger transformation. OPTICS LETTERS, 32(3), 226-228 [10.1364/OL.32.000226].

Evaluation of diffraction catastrophes by using Weniger transformation

BORGHI, Riccardo
2007-01-01

Abstract

Weniger transformation is a powerful nonlinear sequence transformation that, when applied to the sequence of the partial sums of a divergent or a slowly convergent series, can convert it to a fast-converging sequence. Weniger transformation is not yet well known in optics. Diffraction catastrophes are fundamental tools for evaluating an optical field in proximity to caustics and singularities. The action of the Weniger transformation on the power series representation of diffraction catastrophes is numerically studied for two particular cases, corresponding to the Airy and the Pearcey functions. The obtained results clearly show that Weniger transformation could become a computational tool of great importance for summing several types of series expansions in optics. (c) 2007 Optical Society of America.
Borghi, R. (2007). Evaluation of diffraction catastrophes by using Weniger transformation. OPTICS LETTERS, 32(3), 226-228 [10.1364/OL.32.000226].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/135107
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact