We revisit a set of symplectic variables introduced by AndreDeprit (Celest Mech 30, 181–195, 1983), which allows for a complete symplectic reduction in rotation invariant Hamiltonian systems, generalizing to arbitrary dimension Jacobi’s reduction of the nodes. In particular, we introduce an action-angle version of Deprit’s variables, connected to the Delaunay variables, and give a new hierarchical proof of the symplectic character of Deprit’s variables.
CHIERCHIA L, & PINZARI G (2011). Deprit's reduction of the nodes revisited. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 109 (3), 285-301.
Titolo: | Deprit's reduction of the nodes revisited |
Autori: | |
Data di pubblicazione: | 2011 |
Rivista: | |
Citazione: | CHIERCHIA L, & PINZARI G (2011). Deprit's reduction of the nodes revisited. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 109 (3), 285-301. |
Abstract: | We revisit a set of symplectic variables introduced by AndreDeprit (Celest Mech 30, 181–195, 1983), which allows for a complete symplectic reduction in rotation invariant Hamiltonian systems, generalizing to arbitrary dimension Jacobi’s reduction of the nodes. In particular, we introduce an action-angle version of Deprit’s variables, connected to the Delaunay variables, and give a new hierarchical proof of the symplectic character of Deprit’s variables. |
Handle: | http://hdl.handle.net/11590/135392 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.