We prove upper and lower bounds on the splitting for a class of a-priori stable Hamiltonian systems, in regions of the phase space characterized by one fast frequency. Finally using an appropriate Normal Form theorem we prove the existence of chains of heteroclinic intersections.

Procesi, M. (2003). Exponentially small splitting and Arnold diffusion for multiple time scale system. REVIEWS IN MATHEMATICAL PHYSICS, 15(4), 339-386 [10.1142/S0129055X03001655].

Exponentially small splitting and Arnold diffusion for multiple time scale system

PROCESI, MICHELA
2003-01-01

Abstract

We prove upper and lower bounds on the splitting for a class of a-priori stable Hamiltonian systems, in regions of the phase space characterized by one fast frequency. Finally using an appropriate Normal Form theorem we prove the existence of chains of heteroclinic intersections.
2003
Procesi, M. (2003). Exponentially small splitting and Arnold diffusion for multiple time scale system. REVIEWS IN MATHEMATICAL PHYSICS, 15(4), 339-386 [10.1142/S0129055X03001655].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/135619
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact