The Mediterranean Sea is currently under siege by a conspicuous alien pressure, and, within some families (e.g. the Ostreidae), the number of native species seems to be remarkably outnumbered by that of the alien ones. We wanted to test the reliability of the molecular data currently available on the small alien oysters recently invading the Mediterranean Sea. Samples from Greece and Turkey, encompassing the known species-specific morphological variation, were sequenced for the markers with the widest taxonomic coverage in the group of small oysters (i.e. the 16S rDNA and the COI). The sequences obtained have been compared with those available in GenBank, and a possible identification at the species level has been finally tested in a DNA-barcoding fashion. The present results clearly demonstrated that our samples belong to a single, morphologically highly variable species. Their 16S sequences were closely related to a sequence registered under the name Dendostrea folium, with a genetic distance which does not warrant conspecificity. Additionally, a remarkable number of sequences retrieved from the GenBank (of both genes) did not form a monophyletic group according to the published classification of the vouchers, suggesting—at least in part—an origin from specimens not properly identified. Both genes seem promising for use as DNA-barcode, although the COI will probably prove more effective. Therefore, we urge the availability of a baseline of oyster pedigreed DNA barcode sequences in the public databases, to allow the use of such genetic data to reliably monitor bio-invasions in the Mediterranean Sea.

CROCETTA F, MARIOTTINI P, SALVI D, & OLIVERIO M (2014). Does GenBank provide a reliable DNA barcode reference to identify small alien oysters invading the Mediterranean Sea?. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, 1-12 [10.1017/S0025315414001027].

Does GenBank provide a reliable DNA barcode reference to identify small alien oysters invading the Mediterranean Sea?

MARIOTTINI, Paolo;
2014

Abstract

The Mediterranean Sea is currently under siege by a conspicuous alien pressure, and, within some families (e.g. the Ostreidae), the number of native species seems to be remarkably outnumbered by that of the alien ones. We wanted to test the reliability of the molecular data currently available on the small alien oysters recently invading the Mediterranean Sea. Samples from Greece and Turkey, encompassing the known species-specific morphological variation, were sequenced for the markers with the widest taxonomic coverage in the group of small oysters (i.e. the 16S rDNA and the COI). The sequences obtained have been compared with those available in GenBank, and a possible identification at the species level has been finally tested in a DNA-barcoding fashion. The present results clearly demonstrated that our samples belong to a single, morphologically highly variable species. Their 16S sequences were closely related to a sequence registered under the name Dendostrea folium, with a genetic distance which does not warrant conspecificity. Additionally, a remarkable number of sequences retrieved from the GenBank (of both genes) did not form a monophyletic group according to the published classification of the vouchers, suggesting—at least in part—an origin from specimens not properly identified. Both genes seem promising for use as DNA-barcode, although the COI will probably prove more effective. Therefore, we urge the availability of a baseline of oyster pedigreed DNA barcode sequences in the public databases, to allow the use of such genetic data to reliably monitor bio-invasions in the Mediterranean Sea.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/136844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact