The western Lucretili Mts. in the central Apennines (Latium, Italy) have been recently re-mapped in great detail and are the subject of combined stratigraphic, sedimentological and structural investigations. In this paper, we present a new stratigraphic interpretation of the Jurassic paleogeography of western Lucretili Mts., where a rift-derived intrabasinal paleo-high of the Alpine Tethys has been identified for the first time by means of facies analysis and biostratigraphic dating. Recognised facies associations, combined with dated stratigraphic sections, allow to define the morphology of the structural paleo-high and to identify the associated gravity-driven deposits (olistoliths) accumulated in the surrounding basin. Furthermore, we investigated the modes of interaction between Jurassic extensional structures and the subsequent contractional patterns developed during the Tertiary mountain building. In detail, the role played during Apennines tectonics by the paleo-escarpments bounding the paleo-high and by the surrounding olistoliths has been analysed. The paleo-escarpments either acted as focussing features for ENE-directed frontal thrust ramp localisation and were offset with small shortening amounts or reactivated as NNE striking high angle transpressional faults or preserved the original geometries as a result of variable orientation of paleo-escarpments with respect to the Neogene compressive stress field (with ENE oriented sigma1). Newly formed ENE striking tear faults connect these either inherited or neo-formed discontinuities. This complex stratigraphic and structural pattern is substantially different from the previous interpretations of this portion of the central Apennines based on a hypothesised layer-cake stratigraphy deformed by neo-formed Neogene thrusts. This contribution strengthens the importance of integrating facies analyses and structural investigations to detect the influence of pre-orogenic structures on compressive structural patterns, in an area where commercial seismic lines are not available and cannot help in reconstructing the subsurface geometries. © 2011 Springer-Verlag.
Bollati, A., Corrado, S., Marino, M. (2012). Inheritance of Jurassic rifted margin architecture into the Apennines Neogene mountain building: a case history from the Lucretili Mts. (Latium, Central Italy). INTERNATIONAL JOURNAL OF EARTH SCIENCES, 101, 1011-1031 [10.1007/s00531-011-0694-7].
Inheritance of Jurassic rifted margin architecture into the Apennines Neogene mountain building: a case history from the Lucretili Mts. (Latium, Central Italy)
CORRADO, Sveva;
2012-01-01
Abstract
The western Lucretili Mts. in the central Apennines (Latium, Italy) have been recently re-mapped in great detail and are the subject of combined stratigraphic, sedimentological and structural investigations. In this paper, we present a new stratigraphic interpretation of the Jurassic paleogeography of western Lucretili Mts., where a rift-derived intrabasinal paleo-high of the Alpine Tethys has been identified for the first time by means of facies analysis and biostratigraphic dating. Recognised facies associations, combined with dated stratigraphic sections, allow to define the morphology of the structural paleo-high and to identify the associated gravity-driven deposits (olistoliths) accumulated in the surrounding basin. Furthermore, we investigated the modes of interaction between Jurassic extensional structures and the subsequent contractional patterns developed during the Tertiary mountain building. In detail, the role played during Apennines tectonics by the paleo-escarpments bounding the paleo-high and by the surrounding olistoliths has been analysed. The paleo-escarpments either acted as focussing features for ENE-directed frontal thrust ramp localisation and were offset with small shortening amounts or reactivated as NNE striking high angle transpressional faults or preserved the original geometries as a result of variable orientation of paleo-escarpments with respect to the Neogene compressive stress field (with ENE oriented sigma1). Newly formed ENE striking tear faults connect these either inherited or neo-formed discontinuities. This complex stratigraphic and structural pattern is substantially different from the previous interpretations of this portion of the central Apennines based on a hypothesised layer-cake stratigraphy deformed by neo-formed Neogene thrusts. This contribution strengthens the importance of integrating facies analyses and structural investigations to detect the influence of pre-orogenic structures on compressive structural patterns, in an area where commercial seismic lines are not available and cannot help in reconstructing the subsurface geometries. © 2011 Springer-Verlag.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.