Starting from the paraxial formulation of the boundary-diffracted-wave theory proposed by Hannay [J. Mod. Opt. 47, 121-124 (2000)] and exploiting its intrinsic geometrical character, we rediscover some classical results of Fresnel diffraction theory, valid for "large" hard-edge apertures, within a somewhat unorthodox perspective. In this way, a geometrical interpretation of the Schwarzchild uniform asymptotics of the paraxially diffracted wavefield by circular apertures [K. Schwarzschild, Sitzb. Munchen Akad. Wiss. Math.-Phys. Kl. 28, 271-294 (1898)] is given and later generalized to deal with arbitrarily shaped apertures with smooth boundaries. A quantitative exploration is then carried out, with the language of catastrophe optics, about the diffraction patterns produced within the geometrical shadow by opaque elliptic disks under plane wave illumination. In particular, the role of the ellipse's evolute as a geometrical caustic of the diffraction pattern is emphasized through an intuitive interpretation of the underlying saddle coalescing mechanism, obtained by suitably visualizing the saddle topology changes induced by letting the observation point move along the ellipse's major axis. (C) 2015 Optical Society of America
Borghi, R. (2015). Uniform asymptotics of paraxial boundary diffraction waves. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION, 32(4), 685-696 [10.1364/JOSAA.32.000685].
Uniform asymptotics of paraxial boundary diffraction waves
BORGHI, Riccardo
2015-01-01
Abstract
Starting from the paraxial formulation of the boundary-diffracted-wave theory proposed by Hannay [J. Mod. Opt. 47, 121-124 (2000)] and exploiting its intrinsic geometrical character, we rediscover some classical results of Fresnel diffraction theory, valid for "large" hard-edge apertures, within a somewhat unorthodox perspective. In this way, a geometrical interpretation of the Schwarzchild uniform asymptotics of the paraxially diffracted wavefield by circular apertures [K. Schwarzschild, Sitzb. Munchen Akad. Wiss. Math.-Phys. Kl. 28, 271-294 (1898)] is given and later generalized to deal with arbitrarily shaped apertures with smooth boundaries. A quantitative exploration is then carried out, with the language of catastrophe optics, about the diffraction patterns produced within the geometrical shadow by opaque elliptic disks under plane wave illumination. In particular, the role of the ellipse's evolute as a geometrical caustic of the diffraction pattern is emphasized through an intuitive interpretation of the underlying saddle coalescing mechanism, obtained by suitably visualizing the saddle topology changes induced by letting the observation point move along the ellipse's major axis. (C) 2015 Optical Society of AmericaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.