We study a rapidly rotating Bose–Einstein condensate confined to a finite trap in the framework of two-dimensional Gross–Pitaevskii theory in the strong coupling (Thomas–Fermi) limit. Denoting the coupling parameter by 1/ε^2 and the rotational velocity by \Omega, we evaluate exactly the next to the leading-order contribution to the ground-state energy in the parameter regime |log ε| \ll \Omega \ll 1/(ε^2|log ε|) with ε → 0. While the TF energy includes only the contribution of the centrifugal forces the next order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.

Correggi, M., Yngvason, J. (2008). Energy and vorticity in fast rotating Bose–Einstein condensates. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 41, 445002-445021 [10.1088/1751-8113/41/44/445002].

Energy and vorticity in fast rotating Bose–Einstein condensates

CORREGGI, MICHELE;
2008

Abstract

We study a rapidly rotating Bose–Einstein condensate confined to a finite trap in the framework of two-dimensional Gross–Pitaevskii theory in the strong coupling (Thomas–Fermi) limit. Denoting the coupling parameter by 1/ε^2 and the rotational velocity by \Omega, we evaluate exactly the next to the leading-order contribution to the ground-state energy in the parameter regime |log ε| \ll \Omega \ll 1/(ε^2|log ε|) with ε → 0. While the TF energy includes only the contribution of the centrifugal forces the next order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.
Correggi, M., Yngvason, J. (2008). Energy and vorticity in fast rotating Bose–Einstein condensates. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 41, 445002-445021 [10.1088/1751-8113/41/44/445002].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/139664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact