Let C be a general element in the locus of curves in M_g lying on some K3 surface, where g is congruent to 3 mod 4 and greater than or equal to 15. Following Mukai's ideas, we show how to reconstruct the K3 surface as a Fourier-Mukai transform of a Brill-Noether locus of rank two vector bundles on C.

ARBARELLO, E., BRUNO, A., & SERNESI, E. (2014). Mukai's program for curves on a K3 surface. ALGEBRAIC GEOMETRY, 1, 532-557 [10.14231/AG-2014-023].

Mukai's program for curves on a K3 surface

BRUNO, Andrea;SERNESI, Edoardo
2014

Abstract

Let C be a general element in the locus of curves in M_g lying on some K3 surface, where g is congruent to 3 mod 4 and greater than or equal to 15. Following Mukai's ideas, we show how to reconstruct the K3 surface as a Fourier-Mukai transform of a Brill-Noether locus of rank two vector bundles on C.
ARBARELLO, E., BRUNO, A., & SERNESI, E. (2014). Mukai's program for curves on a K3 surface. ALGEBRAIC GEOMETRY, 1, 532-557 [10.14231/AG-2014-023].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/139930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact