We present a lower bound for the exponent of the group of rational points of an elliptic curve over a finite field. Earlier results considered finite fields $ \mathbb{F}_{q^m}$ where either $ q$ is fixed or $ m=1$ and $ q$ is prime. Here, we let both $ q$ and $ m$ vary; our estimate is explicit and does not depend on the elliptic curve.
PAPPALARDI F (2011). On the exponents of the group of points of an Elliptic curve over a finite field. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 139(7), 2337-2341 [10.1090/S0002-9939-2010-10658-5].
Titolo: | On the exponents of the group of points of an Elliptic curve over a finite field | |
Autori: | ||
Data di pubblicazione: | 2011 | |
Rivista: | ||
Citazione: | PAPPALARDI F (2011). On the exponents of the group of points of an Elliptic curve over a finite field. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 139(7), 2337-2341 [10.1090/S0002-9939-2010-10658-5]. | |
Abstract: | We present a lower bound for the exponent of the group of rational points of an elliptic curve over a finite field. Earlier results considered finite fields $ \mathbb{F}_{q^m}$ where either $ q$ is fixed or $ m=1$ and $ q$ is prime. Here, we let both $ q$ and $ m$ vary; our estimate is explicit and does not depend on the elliptic curve. | |
Handle: | http://hdl.handle.net/11590/140692 | |
ISBN: | 0002-9939 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.