We prove, by applying a KAM algorithm, existence of large families of stable and unstable quasi periodic solutions for the NLS in any number of independent frequencies. The main tools are the existence of a non-degenerate integrable normal form proved in previous papers by the authors and a suitable generalization of the quasi-Toplitz functions.

C., P., Procesi, M. (2015). A KAM algorithm for the resonant non-linear Schrödinger equation. ADVANCES IN MATHEMATICS, 272, 399-470 [10.1016/j.aim.2014.12.004].

A KAM algorithm for the resonant non-linear Schrödinger equation

PROCESI, MICHELA
2015-01-01

Abstract

We prove, by applying a KAM algorithm, existence of large families of stable and unstable quasi periodic solutions for the NLS in any number of independent frequencies. The main tools are the existence of a non-degenerate integrable normal form proved in previous papers by the authors and a suitable generalization of the quasi-Toplitz functions.
2015
C., P., Procesi, M. (2015). A KAM algorithm for the resonant non-linear Schrödinger equation. ADVANCES IN MATHEMATICS, 272, 399-470 [10.1016/j.aim.2014.12.004].
File in questo prodotto:
File Dimensione Formato  
PPKam.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/140916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 82
social impact