Let R be a commutative ring and let Spec R denote the collection of prime ideals of R. We define a topology on Spec R by using ultrafilters and demonstrate that this topology is identical to the well-known patch or constructible topology. The proof is accomplished by use of a von Neumann regular ring canonically associated with R.

Fontana, M., LOPER K., A. (2008). The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring. COMMUNICATIONS IN ALGEBRA, 36, 2917-2922 [10.1080/00927870802110326].

The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring

FONTANA, Marco;
2008-01-01

Abstract

Let R be a commutative ring and let Spec R denote the collection of prime ideals of R. We define a topology on Spec R by using ultrafilters and demonstrate that this topology is identical to the well-known patch or constructible topology. The proof is accomplished by use of a von Neumann regular ring canonically associated with R.
Fontana, M., LOPER K., A. (2008). The patch topology and the ultrafilter topology on the prime spectrum of a commutative ring. COMMUNICATIONS IN ALGEBRA, 36, 2917-2922 [10.1080/00927870802110326].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/142480
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact