For any finitely generated subgroupΓofQ* we compute a formula for the density of the primes for which the reduction modulopofΓcontains a primitive root modulop. We use this to conjecture a characterization of “optimal” subgroups (i.e., subgroups that have maximal density). We also improve the error term in the asymptotic formula of Pappalardi's Theorem 1.1 (Math. Comp.66(1997), 853–868).

L., C., Pappalardi, F. (1999). On the r-rank Artin Conjecture II. JOURNAL OF NUMBER THEORY, 75(1), 120-132 [10.1006/jnth.1998.2319].

On the r-rank Artin Conjecture II

PAPPALARDI, FRANCESCO
1999-01-01

Abstract

For any finitely generated subgroupΓofQ* we compute a formula for the density of the primes for which the reduction modulopofΓcontains a primitive root modulop. We use this to conjecture a characterization of “optimal” subgroups (i.e., subgroups that have maximal density). We also improve the error term in the asymptotic formula of Pappalardi's Theorem 1.1 (Math. Comp.66(1997), 853–868).
1999
L., C., Pappalardi, F. (1999). On the r-rank Artin Conjecture II. JOURNAL OF NUMBER THEORY, 75(1), 120-132 [10.1006/jnth.1998.2319].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/143714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact