We prove that a sharp Moser–Trudinger inequality holds true on a conformal disc if and only if the metric is bounded from above by the Poincar´e metric. We also derive necessary and sufficient conditions for the validity of a sharp Moser–Trudinger inequality on a simply connected domain in R2.

Mancini, G., K., S. (2010). Moser-Trudinger inequality on conformal discs. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 12, N. 6, 1055-1068.

Moser-Trudinger inequality on conformal discs

MANCINI, Giovanni;
2010-01-01

Abstract

We prove that a sharp Moser–Trudinger inequality holds true on a conformal disc if and only if the metric is bounded from above by the Poincar´e metric. We also derive necessary and sufficient conditions for the validity of a sharp Moser–Trudinger inequality on a simply connected domain in R2.
2010
Mancini, G., K., S. (2010). Moser-Trudinger inequality on conformal discs. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 12, N. 6, 1055-1068.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/145872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 65
social impact