We prove the absolute monotonicity or complete monotonicity of some determinant functions whose entries involve ψ(m)(x) = (dm/dxm)[ (x)/(x)], modified Bessel functions Iν , Kν , the confluent hypergeometric function, and the Tricomi function . Our results recover and generalize some known determinantal inequalities. We also show that a certain determinant formed by the Fibonacci numbers are nonnegative while determinants involving Hermite polynomials of imaginary arguments are shown to be completely monotonic functions.

Laforgia, A.I.A., E. H. M., I. (2007). Monotonicity properties of determinantes of special functions. CONSTRUCTIVE APPROXIMATION, 26, 1-9.

Monotonicity properties of determinantes of special functions

LAFORGIA, Andrea Ivo Antonio;
2007-01-01

Abstract

We prove the absolute monotonicity or complete monotonicity of some determinant functions whose entries involve ψ(m)(x) = (dm/dxm)[ (x)/(x)], modified Bessel functions Iν , Kν , the confluent hypergeometric function, and the Tricomi function . Our results recover and generalize some known determinantal inequalities. We also show that a certain determinant formed by the Fibonacci numbers are nonnegative while determinants involving Hermite polynomials of imaginary arguments are shown to be completely monotonic functions.
2007
Laforgia, A.I.A., E. H. M., I. (2007). Monotonicity properties of determinantes of special functions. CONSTRUCTIVE APPROXIMATION, 26, 1-9.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/146557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact