A prototype of zero-sum theorems, the well-known theorem of Erdős, Ginzburg and Ziv says that for any positive integer n, any sequence a1,a2,…,a2n-1 of 2n-1 integers has a subsequence of n elements whose sum is 0 modulo n. Appropriate generalizations of the question, especially that for (Z/pZ)d, generated a lot of research and still have challenging open questions. Here we propose a new generalization of the Erdős–Ginzburg–Ziv theorem and prove it in some basic cases.

ADHIKARI S., D., CHEN Y., G., FRIEDLANDER J., B., KONYAGIN S., V., Pappalardi, F. (2006). Contributions to zero-sum problems. DISCRETE MATHEMATICS, 306(1), 1-10 [10.1016/j.disc.2005.11.002].

Contributions to zero-sum problems

PAPPALARDI, FRANCESCO
2006-01-01

Abstract

A prototype of zero-sum theorems, the well-known theorem of Erdős, Ginzburg and Ziv says that for any positive integer n, any sequence a1,a2,…,a2n-1 of 2n-1 integers has a subsequence of n elements whose sum is 0 modulo n. Appropriate generalizations of the question, especially that for (Z/pZ)d, generated a lot of research and still have challenging open questions. Here we propose a new generalization of the Erdős–Ginzburg–Ziv theorem and prove it in some basic cases.
2006
ADHIKARI S., D., CHEN Y., G., FRIEDLANDER J., B., KONYAGIN S., V., Pappalardi, F. (2006). Contributions to zero-sum problems. DISCRETE MATHEMATICS, 306(1), 1-10 [10.1016/j.disc.2005.11.002].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/149227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 42
social impact