Given $a_1, \ldots, a_r \in\Q \{0, \pm 1\}$, the Schinzel–Wójcik problem is to determine whether there exist infinitely many primes $p$ for which the order modulo $p$ of each $a_1, \cdots, a_r$ coincides. We prove on the GRH that the primes with this property have a density and in the special case when each $a_i$ is a power of a fixed rational number, we show unconditionally that such a density is non zero. Finally, in the case when all the $a_i$'s are prime, we express the density it terms of an infinite product.

Pappalardi, F., Susa, A. (2009). On a problem of Schinzel and Wójcik involving equalities between multiplicative orders. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 146(2), 303-319 [10.1017/S0305004108001795].

On a problem of Schinzel and Wójcik involving equalities between multiplicative orders

PAPPALARDI, FRANCESCO;
2009-01-01

Abstract

Given $a_1, \ldots, a_r \in\Q \{0, \pm 1\}$, the Schinzel–Wójcik problem is to determine whether there exist infinitely many primes $p$ for which the order modulo $p$ of each $a_1, \cdots, a_r$ coincides. We prove on the GRH that the primes with this property have a density and in the special case when each $a_i$ is a power of a fixed rational number, we show unconditionally that such a density is non zero. Finally, in the case when all the $a_i$'s are prime, we express the density it terms of an infinite product.
2009
Pappalardi, F., Susa, A. (2009). On a problem of Schinzel and Wójcik involving equalities between multiplicative orders. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 146(2), 303-319 [10.1017/S0305004108001795].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/149251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact