The safety and operability of road networks is, in part, dependent on the quality of the pavement. It is known that pavements suffer from many different structural problems which can lead to damage to the pavement surface. To minimize the effect of these problems programmed policies for pavement management are required. Additionally a given local anomaly on the road surface can affect the safety of the road to various degrees according to the category of the road, so it is possible to set up different programmes of repair according to the different standards of road. Programmed policies for pavement management are required because of the wide structural damage which occurs to pavements during their normal operating life. This has consequences for the safety and operability of road networks. During the last decade, road networks suffered from great structural damage. The damage occurs for different reasons, such as the increasing traffic or the lack of means for routine maintenance. Many forms of damage, originating in the bottom layers are invisible until the pavement cracks. They depend on the infiltration of water and the presence of cohesive soil greatly reduces the bearing capacity of the subasphalt layers and underlying soils. On the basis of an in-depth literature review, an experimental survey with Ground Penetrating Radar (GPR) was carried out to calibrate the geophysical parameters and to validate the reliability of an indirect diagnostic method of pavement damage. The experiments were set on a pavement under which water was injected over a period of several hours. GPR travel time data were used to estimate the dielectric constant and the water content in the unbound aggregate layer, the variations in water content with time and particular areas where rate of infiltration decreases. A new methodology has been proposed to extract the hydraulic permittivity fields in sub-asphalt structural layers and soils from the moisture maps observed with GPR. It is effective at diagnosing the presence of clay or cohesive soil that compromises the bearing capacity of sub-base and induces damage.

BENEDETTO A, & S. PENSA (2007). Indirect diagnosis of pavement structural damages using surface GPR reflection techniques. JOURNAL OF APPLIED GEOPHYSICS, 62(2), 107-123 [10.1016/j.jappgeo.2006.09.001].

Indirect diagnosis of pavement structural damages using surface GPR reflection techniques

BENEDETTO, ANDREA;
2007

Abstract

The safety and operability of road networks is, in part, dependent on the quality of the pavement. It is known that pavements suffer from many different structural problems which can lead to damage to the pavement surface. To minimize the effect of these problems programmed policies for pavement management are required. Additionally a given local anomaly on the road surface can affect the safety of the road to various degrees according to the category of the road, so it is possible to set up different programmes of repair according to the different standards of road. Programmed policies for pavement management are required because of the wide structural damage which occurs to pavements during their normal operating life. This has consequences for the safety and operability of road networks. During the last decade, road networks suffered from great structural damage. The damage occurs for different reasons, such as the increasing traffic or the lack of means for routine maintenance. Many forms of damage, originating in the bottom layers are invisible until the pavement cracks. They depend on the infiltration of water and the presence of cohesive soil greatly reduces the bearing capacity of the subasphalt layers and underlying soils. On the basis of an in-depth literature review, an experimental survey with Ground Penetrating Radar (GPR) was carried out to calibrate the geophysical parameters and to validate the reliability of an indirect diagnostic method of pavement damage. The experiments were set on a pavement under which water was injected over a period of several hours. GPR travel time data were used to estimate the dielectric constant and the water content in the unbound aggregate layer, the variations in water content with time and particular areas where rate of infiltration decreases. A new methodology has been proposed to extract the hydraulic permittivity fields in sub-asphalt structural layers and soils from the moisture maps observed with GPR. It is effective at diagnosing the presence of clay or cohesive soil that compromises the bearing capacity of sub-base and induces damage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/149382
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 98
  • ???jsp.display-item.citation.isi??? 80
social impact