Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
Benvenuti nell'Anagrafe della Ricerca d'Ateneo
Transport of a conservative solute takes place by advection and by pore-scale dispersion in a formation of spatially variable logconductivity Y(x) = In K(x). The latter is modeled as a normal stationary random space function, characterized by a few statistical parameters, like the mean <Y>, the variance sigma(Y)(2), the horizontal and vertical integral scales I-h and I-v. The local solute concentration C(x, t), a random function of space and time, is characterized by its statistical moments, like, e.g. the mean <C> and the standard deviation sigma(C). A simplified analysis for determining the concentration uncertainty is proposed. The proposed methodology, valid for nonreactive solutes, is based on a few simplifications, the most important being: (i) large transverse dimensions of the injected plume compared to the logconductivity correlation lengths, (ii) mild heterogeneity of the hydraulic properties, which allows for the use of the first-order analysis, (iii) highly anisotropic formations, and (iv) mean uniform flow. The concentration uncertainty is represented through the coefficient of variation CVC = sigma(C)/<C> at the plume center, where the expected concentration is maximum. Results for CVC are illustrated as function of time and on two dimensionless parameters: Omega = I-v(2)/(I(h)alpha(dT)) and Lambda = L-1/rootA(11)I(h), where L-1 is the longitudinal dimension of the initial plume, A(11) is the longitudinal macro dispersivity, and alpha(dT) is the local transverse dispersivity. Summary graphs lead to a quick and simple estimate of the time-dependent concentration uncertainty, as well as its peak and its setting time (i.e. the time needed to reach the peak coefficient of variation). The methodology and its results can be used to assess the concentration uncertainty at the plume center. The problem is quite important when dealing with contaminant prediction and risk analysis. (C) 2003 Elsevier B.V. All rights reserved.
Fiori, A. (2003). An asymptotic analysis for determining concentration uncertainty in aquifer transport RID A-2321-2010. JOURNAL OF HYDROLOGY, 284(1-4), 1-12 [10.1016/S0022-1694(02)00416-X].
An asymptotic analysis for determining concentration uncertainty in aquifer transport RID A-2321-2010
Transport of a conservative solute takes place by advection and by pore-scale dispersion in a formation of spatially variable logconductivity Y(x) = In K(x). The latter is modeled as a normal stationary random space function, characterized by a few statistical parameters, like the mean , the variance sigma(Y)(2), the horizontal and vertical integral scales I-h and I-v. The local solute concentration C(x, t), a random function of space and time, is characterized by its statistical moments, like, e.g. the mean and the standard deviation sigma(C). A simplified analysis for determining the concentration uncertainty is proposed. The proposed methodology, valid for nonreactive solutes, is based on a few simplifications, the most important being: (i) large transverse dimensions of the injected plume compared to the logconductivity correlation lengths, (ii) mild heterogeneity of the hydraulic properties, which allows for the use of the first-order analysis, (iii) highly anisotropic formations, and (iv) mean uniform flow. The concentration uncertainty is represented through the coefficient of variation CVC = sigma(C)/ at the plume center, where the expected concentration is maximum. Results for CVC are illustrated as function of time and on two dimensionless parameters: Omega = I-v(2)/(I(h)alpha(dT)) and Lambda = L-1/rootA(11)I(h), where L-1 is the longitudinal dimension of the initial plume, A(11) is the longitudinal macro dispersivity, and alpha(dT) is the local transverse dispersivity. Summary graphs lead to a quick and simple estimate of the time-dependent concentration uncertainty, as well as its peak and its setting time (i.e. the time needed to reach the peak coefficient of variation). The methodology and its results can be used to assess the concentration uncertainty at the plume center. The problem is quite important when dealing with contaminant prediction and risk analysis. (C) 2003 Elsevier B.V. All rights reserved.
Fiori, A. (2003). An asymptotic analysis for determining concentration uncertainty in aquifer transport RID A-2321-2010. JOURNAL OF HYDROLOGY, 284(1-4), 1-12 [10.1016/S0022-1694(02)00416-X].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/154641
Citazioni
ND
5
5
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.
Errore
Errore
Informativa cookie
Utilizziamo cookie di prima e di terza parte per garantire la funzionalità del sito e per mostrare "le citazioni sociali (PLUMX)", "le pubblicazioni suggerite (core recommender)", "il grafico delle citazioni" e "le licenze dei fulltext". I Cookie di terze parti sono disattivati di default salvo esplicito consenso (Accetta tutti).
Preferenze cookie
Utilizzo dei cookie?
Utilizziamo i cookie per consentire il funzionamento del sito e per migliorare la tua esperienza online. Puoi scegliere per ogni categoria se abilitarli/disabilitarli quando vuoi. Per maggiori dettagli relativi ai cookie ed altri dati sensibili, puoi leggere la cookie policy e la privacy policy integrale.
Questi cookie sono essenziali per il funzionamento del nostro sito. Senza questi cookie, il sito potrebbe non funzionare correttamente.
Questi cookie consentono al sito di ricordare le scelte che hai eseguito in precedenza
Nome
Dominio
Durata
Descrizione
_pk.*
matomo.valueforyou.cineca.it
sessione
permette il tracciamento delle scelte fatte dall'utente
Questi cookie consentono al sito di accedere a funzionalità esterne
Nome
Dominio
Durata
Descrizione
s_.*
plu.mx
sessione
recupero grafico citazioni sociali da plumx
A_.*
core.ac.uk
7 giorni
recupero pubblicazioni consigliate per il pannello core-recommander
GS_.*
gstatic.com
richiesta http
visualizza grafico citazioni
CC_.*
creativecommons.org
richiesta http
visualizza licenza bitstream
Maggiori informazioni
Per qualsiasi domanda in relazione alle nostre policy sui cookie e sulle tue scelte, puoi visualizzare l'informativa completa a questo url.