We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schrodinger equation.
Levi D, Petrera M, & Scimiterna C (2009). Multiscale reduction of discrete nonlinear Schrodinger equations. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 42(45).
Titolo: | Multiscale reduction of discrete nonlinear Schrodinger equations |
Autori: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Citazione: | Levi D, Petrera M, & Scimiterna C (2009). Multiscale reduction of discrete nonlinear Schrodinger equations. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 42(45). |
Abstract: | We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schrodinger equation. |
Handle: | http://hdl.handle.net/11590/155503 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.