We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schrodinger equation.

Levi, D., Petrera, M., Scimiterna, C. (2009). Multiscale reduction of discrete nonlinear Schrodinger equations. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 42(45) [10.1088/1751-8113/42/45/454011].

Multiscale reduction of discrete nonlinear Schrodinger equations

LEVI, Decio;
2009-01-01

Abstract

We use a discrete multiscale analysis to study the asymptotic integrability of differential-difference equations. In particular, we show that multiscale perturbation techniques provide an analytic tool to derive necessary integrability conditions for two well-known discretizations of the nonlinear Schrodinger equation.
2009
Levi, D., Petrera, M., Scimiterna, C. (2009). Multiscale reduction of discrete nonlinear Schrodinger equations. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 42(45) [10.1088/1751-8113/42/45/454011].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/155503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact