A systematic method to construct N-body integrable systems is introduced by means of phase space realizations of universal enveloping Hopf algebras. A particular realization for the so(2, 1) case (Gaudin system) is analysed and an integrable quantum deformation is constructed by using quantum algebras as Poisson-Hopf symmetries.

Ballesteros, A., Corsetti, M., Ragnisco, O. (1996). N-dimensional classical integrable systems from Hopf algebras. CZECHOSLOVAK JOURNAL OF PHYSICS, 46(12), 1153-1163 [10.1007/BF01690329].

N-dimensional classical integrable systems from Hopf algebras

RAGNISCO, Orlando
1996-01-01

Abstract

A systematic method to construct N-body integrable systems is introduced by means of phase space realizations of universal enveloping Hopf algebras. A particular realization for the so(2, 1) case (Gaudin system) is analysed and an integrable quantum deformation is constructed by using quantum algebras as Poisson-Hopf symmetries.
1996
Ballesteros, A., Corsetti, M., Ragnisco, O. (1996). N-dimensional classical integrable systems from Hopf algebras. CZECHOSLOVAK JOURNAL OF PHYSICS, 46(12), 1153-1163 [10.1007/BF01690329].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/156408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 31
social impact