We prove existence and multiplicity of small amplitude periodic solutions for the wave equation with small ``mass'' and odd nonlinearity. Such solutions bifurcate from resonant finite dimensional invariant tori of the fourth order Birkhoff normal form of the associated hamiltonian system. The number of geometrically distinct solutions and their minimal periods go to infinity when the ``mass'' goes to zero. This is the first result about long minimal period for the autonomous wave equation.

Biasco, L., DI GREGORIO, L. (2006). Time periodic solutions for the nonlinear wave equation with long minimal period. SIAM JOURNAL ON MATHEMATICAL ANALYSIS.

Time periodic solutions for the nonlinear wave equation with long minimal period

BIASCO, LUCA;
2006-01-01

Abstract

We prove existence and multiplicity of small amplitude periodic solutions for the wave equation with small ``mass'' and odd nonlinearity. Such solutions bifurcate from resonant finite dimensional invariant tori of the fourth order Birkhoff normal form of the associated hamiltonian system. The number of geometrically distinct solutions and their minimal periods go to infinity when the ``mass'' goes to zero. This is the first result about long minimal period for the autonomous wave equation.
2006
Biasco, L., DI GREGORIO, L. (2006). Time periodic solutions for the nonlinear wave equation with long minimal period. SIAM JOURNAL ON MATHEMATICAL ANALYSIS.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/156494
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact