Let D be a domain, E a subset of its quotient field K, and Int(E,D) = {f ∈ K[X] | f (E) ⊆ D}. The polynomial closure of E is the set clD(E) = {x ∈ K | f (x) ∈ D, ∀ f ∈ Int(E,D)}.We compare the polynomial closure with the divisorial closure in a general setting and then in an essential domain. Especially,we showthat these two closures of ideals are the same if D is a Krull-type domain.

PARK M., H., Tartarone, F. (2005). Polynomial closure in Essential domains. MANUSCRIPTA MATHEMATICA, 117 n.1, 29-41 [10.1007/s00229-005-0547-4].

Polynomial closure in Essential domains

TARTARONE, FRANCESCA
2005-01-01

Abstract

Let D be a domain, E a subset of its quotient field K, and Int(E,D) = {f ∈ K[X] | f (E) ⊆ D}. The polynomial closure of E is the set clD(E) = {x ∈ K | f (x) ∈ D, ∀ f ∈ Int(E,D)}.We compare the polynomial closure with the divisorial closure in a general setting and then in an essential domain. Especially,we showthat these two closures of ideals are the same if D is a Krull-type domain.
2005
PARK M., H., Tartarone, F. (2005). Polynomial closure in Essential domains. MANUSCRIPTA MATHEMATICA, 117 n.1, 29-41 [10.1007/s00229-005-0547-4].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/158193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact