Let $D$ be an integral domain with quotient field $K$ and let $X$ be an indeterminate over $D$. Also, let $\boldsymbol{\mathcal{T}}:=\{T_{\lambda }\mid \lambda \in \Lambda \}$ be a defining family of quotient rings of $D$ and suppose that $\ast $ is a finite type star operation on $D$ induced by $\boldsymbol{\mathcal{T}}$. We show that $D$ is a P$\ast $MD (resp., P$v$MD) if and only if $(\co_D(fg))^{\ast }=(\co_D(f)\co_D(g))^{\ast }$ (resp., $(\co_D(fg))^{w }=(\co_D(f)\co_D(g))^{w }$) for all $0 \ne f,g \in K[X]$. A more general version of this result is given in the semistar operation setting. We give a method for recognizing P$v$MD's which are not P$\ast $MD's for a certain finite type star operation $\ast $. We study domains $D$ for which the $\ast $--class group $\Cl^{\ast }(D)$ equals the $t$--class group $\Cl^{t}(D)$ for any finite type star operation $\ast $, and we indicate examples of P$v$MD's $D$ such that $\Cl^{\ast(D)\subsetneq \Cl^{t}(D)$. We also compute $\Cl^v(D)$ for certain valuation domains $D$.

ANDERSON D., F., Fontana, M., Zafrullah, M. (2008). Some remarks on Prüfer *-multiplication domains and class groups. JOURNAL OF ALGEBRA, 319, 272-295 [10.1016/j.jalgebra.2007.10.006].

Some remarks on Prüfer *-multiplication domains and class groups

FONTANA, Marco;
2008-01-01

Abstract

Let $D$ be an integral domain with quotient field $K$ and let $X$ be an indeterminate over $D$. Also, let $\boldsymbol{\mathcal{T}}:=\{T_{\lambda }\mid \lambda \in \Lambda \}$ be a defining family of quotient rings of $D$ and suppose that $\ast $ is a finite type star operation on $D$ induced by $\boldsymbol{\mathcal{T}}$. We show that $D$ is a P$\ast $MD (resp., P$v$MD) if and only if $(\co_D(fg))^{\ast }=(\co_D(f)\co_D(g))^{\ast }$ (resp., $(\co_D(fg))^{w }=(\co_D(f)\co_D(g))^{w }$) for all $0 \ne f,g \in K[X]$. A more general version of this result is given in the semistar operation setting. We give a method for recognizing P$v$MD's which are not P$\ast $MD's for a certain finite type star operation $\ast $. We study domains $D$ for which the $\ast $--class group $\Cl^{\ast }(D)$ equals the $t$--class group $\Cl^{t}(D)$ for any finite type star operation $\ast $, and we indicate examples of P$v$MD's $D$ such that $\Cl^{\ast(D)\subsetneq \Cl^{t}(D)$. We also compute $\Cl^v(D)$ for certain valuation domains $D$.
2008
ANDERSON D., F., Fontana, M., Zafrullah, M. (2008). Some remarks on Prüfer *-multiplication domains and class groups. JOURNAL OF ALGEBRA, 319, 272-295 [10.1016/j.jalgebra.2007.10.006].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/158251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact