We consider the Grassmannian $Gr(k,n)$ of $(k+1)$-dimensional linear subspaces of $V_n=H^0({\P^1},\O_{\P^1}(n))$. We define $\frak{X}_{k,r,d}$ as the classifying space of the $k$-dimensional linear systems of degree $n$ on $\P^1$ whose basis realize a fixed number of polynomial relations of fixed degree, say a fixed number of syzygies of a certain degree. The first result of this paper is the computation of the dimension of $\frak{X}_{k,r,d}$. In the second part we make a link between $\frak{X}_{k,r,d}$ and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.
Consideriamo la Grassmanniana $Gr(k,n)$ dei of $(k+1)$-sottospazi lineari di $V_n=H^0({\P^1},\O_{\P^1}(n))$. Definiamo la varietà $\frak{X}_{k,r,d}$ classificante i sistemi lineari di dimensione $k$ e grado $n$ su $\P^1$ le cui basi verificano un fissato numero di relazioni polinomiali di dato grado, ovvero un fissato numero di sizigie di dato grado. Nel presente lavoro calcoliamo la dimensione di $\frak{X}_{k,r,d}$. Inoltre, studiamo il link tra $\frak{X}_{k,r,d}$ le varietà di Poncelet. In particolare, mostriamo che l'esistenza di sizigie lineari implica l'esistenza di singolarità sulle varietà di Poncelet.
Ilardi, G., Supino, P., Valles, J. (2009). Geometry of syzygies via Poncelet varieties. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2(3), 579-589.
Geometry of syzygies via Poncelet varieties
SUPINO, PAOLA;
2009-01-01
Abstract
We consider the Grassmannian $Gr(k,n)$ of $(k+1)$-dimensional linear subspaces of $V_n=H^0({\P^1},\O_{\P^1}(n))$. We define $\frak{X}_{k,r,d}$ as the classifying space of the $k$-dimensional linear systems of degree $n$ on $\P^1$ whose basis realize a fixed number of polynomial relations of fixed degree, say a fixed number of syzygies of a certain degree. The first result of this paper is the computation of the dimension of $\frak{X}_{k,r,d}$. In the second part we make a link between $\frak{X}_{k,r,d}$ and the Poncelet varieties. In particular, we prove that the existence of linear syzygies implies the existence of singularities on the Poncelet varieties.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.