"Nowadays many people use public transports in urban centres. Consequently, every day a lot of buses move within cities, trying to ensure the best service to citizens. During the year buses become crowded places and using an air conditioning system in constant operation, it tries to ensure a certain condition of comfort for the passengers on board. The aim of this study is to analyse and optimize the energy performance of a bus shell, identifying practical solutions that have not yet been adopted in order to reduce the impact of air conditioning on bus consumption and, therefore, on air pollution. For this reason it was decided to conduct a thermal analysis of a bus for public transport, in order to understand the behaviour of the bus shell and to deduce possible optimization measures that have not yet been made until now. The analysis was carried out considering the hottest day of July and the coldest day of January, considering the conditions of operation based on the most common graphics TGM able to define the concentration of traffic city during the 24 hours per day. The study was done using the dynamic simulation software TRNSYS. With this software it was possible to recreate faithfully the structure of the bus and the external environmental conditions, assessing the impact of different technical solutions for an improvement of internal conditions and a reduction of the cooling capacity required. Because the presence of passengers in public transport is considered like a "benefit" during the winter, the analysis started with the identification of a summer solution and the subsequent evaluation of this solution for the wintertime. The aim of this study was to optimize the bus shell and select the most appropriate solutions. Regarding the transparent surfaces it has been given importance to factors such as the thermal transmittance and the solar gain factor (g-value). Aware of the influence given by the solar radiation on the energy loads, we have simulated bus energy performance also considering different types of paintwork with high reflectance."

DE LIETO VOLLARO, R., Botta, F., Evangelisti, L., Gori, P., & Guattari, M.C. (2013). Energy Performance Optimization of a Bus for Urban Public Transport. INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY, 5(4), 3639-3648.

Energy Performance Optimization of a Bus for Urban Public Transport

DE LIETO VOLLARO, ROBERTO;BOTTA, FABIO;Evangelisti L;GORI, Paola;GUATTARI, MARIA CLAUDIA
2013

Abstract

"Nowadays many people use public transports in urban centres. Consequently, every day a lot of buses move within cities, trying to ensure the best service to citizens. During the year buses become crowded places and using an air conditioning system in constant operation, it tries to ensure a certain condition of comfort for the passengers on board. The aim of this study is to analyse and optimize the energy performance of a bus shell, identifying practical solutions that have not yet been adopted in order to reduce the impact of air conditioning on bus consumption and, therefore, on air pollution. For this reason it was decided to conduct a thermal analysis of a bus for public transport, in order to understand the behaviour of the bus shell and to deduce possible optimization measures that have not yet been made until now. The analysis was carried out considering the hottest day of July and the coldest day of January, considering the conditions of operation based on the most common graphics TGM able to define the concentration of traffic city during the 24 hours per day. The study was done using the dynamic simulation software TRNSYS. With this software it was possible to recreate faithfully the structure of the bus and the external environmental conditions, assessing the impact of different technical solutions for an improvement of internal conditions and a reduction of the cooling capacity required. Because the presence of passengers in public transport is considered like a "benefit" during the winter, the analysis started with the identification of a summer solution and the subsequent evaluation of this solution for the wintertime. The aim of this study was to optimize the bus shell and select the most appropriate solutions. Regarding the transparent surfaces it has been given importance to factors such as the thermal transmittance and the solar gain factor (g-value). Aware of the influence given by the solar radiation on the energy loads, we have simulated bus energy performance also considering different types of paintwork with high reflectance."
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11590/267549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact