In this study, alpha-bisabolol, a sesquiterpene alcohol present in natural essential oil, was found to have a strong time- and dose-dependent cytotoxic effect on human and rat glioma cells. After 24 h of treatment with 2.5-3.5 microM alpha-bisabolol, the viability of these cells was reduced by 50% with respect to untreated cells. Furthermore, the viability of normal rat glial cells was not affected by treatment with alpha-bisabolol at the same concentrations as above. Glioma cells treated with high concentration of alpha-bisabolol (10 microM) resulted in a 100% cell death. Judging from hypo-G1 accumulation, poly(ADP-ribose) polymerase cleavage, and DNA ladder formation, the cytotoxicity triggered by alpha-bisabolol resulted from apoptosis induction. Moreover, the dissipation of mitochondrial-inner transmembrane potential and the release of cytochrome c from mitochondria indicated that, in these glioma cells, apoptosis occurred through an intrinsic pathway. As pointed out by the experimental results, alpha-bisabolol may be considered a novel compound able to inhibit glioma cell growth and survival.
Cavalieri, E., Mariotto, S., Fabrizi, C., DE PRATI, A.C., Gottardo, R., Leone, S., et al. (2004). alpha-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, Mar 12;315(3), 589-94.
alpha-Bisabolol, a nontoxic natural compound, strongly induces apoptosis in glioma cells.
LEONE, STEFANO;LAURO, Giuliana Maria;
2004-01-01
Abstract
In this study, alpha-bisabolol, a sesquiterpene alcohol present in natural essential oil, was found to have a strong time- and dose-dependent cytotoxic effect on human and rat glioma cells. After 24 h of treatment with 2.5-3.5 microM alpha-bisabolol, the viability of these cells was reduced by 50% with respect to untreated cells. Furthermore, the viability of normal rat glial cells was not affected by treatment with alpha-bisabolol at the same concentrations as above. Glioma cells treated with high concentration of alpha-bisabolol (10 microM) resulted in a 100% cell death. Judging from hypo-G1 accumulation, poly(ADP-ribose) polymerase cleavage, and DNA ladder formation, the cytotoxicity triggered by alpha-bisabolol resulted from apoptosis induction. Moreover, the dissipation of mitochondrial-inner transmembrane potential and the release of cytochrome c from mitochondria indicated that, in these glioma cells, apoptosis occurred through an intrinsic pathway. As pointed out by the experimental results, alpha-bisabolol may be considered a novel compound able to inhibit glioma cell growth and survival.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.