In January 2002 Mount Nyiragongo erupted foiditic lavas that covered the Southern volcano flank devastating vast urban areas. Lava flows originated from vents at different heights on the eruptive fissure displayed different velocities, from tens of km/h at the highest vents to slow advance (0.1–1 km/h) in Goma town several km away from the volcano. To understand the different behavior of lava flows and their threat to the local population, we undertook a multidisciplinary study involving textural and rheological measurements and numerical simulations of heat transfer during magma ascent. We demonstrate that pre-eruptive cooling and syn-eruptive undercooling of magma determined the different rheological behavior of lava flows erupted from vents at diverse heights. Venting at lower altitudes is expected to produce viscous, slowly advancing lavas, although development of fluid, faster flows should be included among possible future eruptive scenarios.

Giordano, D., Polacci, M., Longo, A., Papale, P., Dingwell, D.B., Boschi, E., et al. (2007). Thermo-rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo. GEOPHYSICAL RESEARCH LETTERS, 34, L06301, doi: 10.1029/2006GL028459 [10.1029/2006GL028459].

Thermo-rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo

GIORDANO, Daniele;
2007-01-01

Abstract

In January 2002 Mount Nyiragongo erupted foiditic lavas that covered the Southern volcano flank devastating vast urban areas. Lava flows originated from vents at different heights on the eruptive fissure displayed different velocities, from tens of km/h at the highest vents to slow advance (0.1–1 km/h) in Goma town several km away from the volcano. To understand the different behavior of lava flows and their threat to the local population, we undertook a multidisciplinary study involving textural and rheological measurements and numerical simulations of heat transfer during magma ascent. We demonstrate that pre-eruptive cooling and syn-eruptive undercooling of magma determined the different rheological behavior of lava flows erupted from vents at diverse heights. Venting at lower altitudes is expected to produce viscous, slowly advancing lavas, although development of fluid, faster flows should be included among possible future eruptive scenarios.
2007
Giordano, D., Polacci, M., Longo, A., Papale, P., Dingwell, D.B., Boschi, E., et al. (2007). Thermo-rheological magma control on the impact of highly fluid lava flows at Mt. Nyiragongo. GEOPHYSICAL RESEARCH LETTERS, 34, L06301, doi: 10.1029/2006GL028459 [10.1029/2006GL028459].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/270125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 52
social impact