""Fruit and vegetable consumption has generally been associated with the prevention or suppression of cancer. However, food could contain a multitude of chemicals (e.g., bisphenol A; BPA) that could synergize or antagonize the effects of diet-derived compounds. Remarkably, food containers (e.g., water and infant bottles) are the largest source of exposure to BPA for human beings. Here, the effects of the coexposure of naringenin (Nar, 1.0 × 10(-9) M to 1.0 × 10(-4) M) and BPA (1.0 × 10(-5) M) in estrogen-dependent breast cancer cell lines expressing (i.e., MCF-7 and T47D) or not expressing (i.e., MDA-MB-231) estrogen receptor α (ERα) are reported. Although both Nar and BPA bind to ERα, they induce opposite effects on breast cancer cell growth. BPA induces cell proliferation, whereas Nar only decreases the number of ERα-positive cells (i.e., MCF-7 and T47D). Notably, even in the presence of BPA, Nar impairs breast cancer cell proliferation by activating caspase-3. The molecular pathways involved require p38 activation, whereas, the BPA-induced AKT activation is completely prevented by the Nar treatment. As a whole, Nar maintains its proapoptotic effects even in the presence of the food contaminant BPA, thus, enlarging the chemopreventive potential of this flavanone.""

Bulzomi, P., Bolli, A., Galluzzo, P., Acconcia, F., Ascenzi, P., Marino, M. (2012). The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB LIFE, 64(8), 690-696 [10.1002/iub.1049].

The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background

ACCONCIA, FILIPPO;ASCENZI, Paolo;MARINO, Maria
2012-01-01

Abstract

""Fruit and vegetable consumption has generally been associated with the prevention or suppression of cancer. However, food could contain a multitude of chemicals (e.g., bisphenol A; BPA) that could synergize or antagonize the effects of diet-derived compounds. Remarkably, food containers (e.g., water and infant bottles) are the largest source of exposure to BPA for human beings. Here, the effects of the coexposure of naringenin (Nar, 1.0 × 10(-9) M to 1.0 × 10(-4) M) and BPA (1.0 × 10(-5) M) in estrogen-dependent breast cancer cell lines expressing (i.e., MCF-7 and T47D) or not expressing (i.e., MDA-MB-231) estrogen receptor α (ERα) are reported. Although both Nar and BPA bind to ERα, they induce opposite effects on breast cancer cell growth. BPA induces cell proliferation, whereas Nar only decreases the number of ERα-positive cells (i.e., MCF-7 and T47D). Notably, even in the presence of BPA, Nar impairs breast cancer cell proliferation by activating caspase-3. The molecular pathways involved require p38 activation, whereas, the BPA-induced AKT activation is completely prevented by the Nar treatment. As a whole, Nar maintains its proapoptotic effects even in the presence of the food contaminant BPA, thus, enlarging the chemopreventive potential of this flavanone.""
2012
Bulzomi, P., Bolli, A., Galluzzo, P., Acconcia, F., Ascenzi, P., Marino, M. (2012). The naringenin-induced proapoptotic effect in breast cancer cell lines holds out against a high bisphenol a background. IUBMB LIFE, 64(8), 690-696 [10.1002/iub.1049].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/278693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 48
social impact