We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Γ = 1.815 ±0.005 and a fluorescent line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of Efold > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between ≈100-300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R lt; 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.
Fürst, F., Müller, C., Madsen, K.K., Lanz, L., Rivers, E., Brightman, M., et al. (2016). NuSTAR and XMM-NEWTON OBSERVATIONS of the HARD X-RAY SPECTRUM of CENTAURUS A. THE ASTROPHYSICAL JOURNAL, 819(2), 150 [10.3847/0004-637X/819/2/150].
NuSTAR and XMM-NEWTON OBSERVATIONS of the HARD X-RAY SPECTRUM of CENTAURUS A
MATT, Giorgio;MARINUCCI, ANDREA;
2016-01-01
Abstract
We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Γ = 1.815 ±0.005 and a fluorescent line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of Efold > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between ≈100-300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R lt; 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.