Let G be a graph and S be a subset of vertices of G. With I[S] we denote the set of all vertices on some geodesic (shortest path) between two vertices of S. A contour vertex of a graph is one whose eccentricity is at least as big as all its neighbors' eccentricities. Let C be the set of contour vertices of a graph. We provide the first example of a graph where I[I[C]] do not coincide with the vertex set of the graph.
Mezzini, M. (2016). On the geodetic iteration number of the contour of a graph. DISCRETE APPLIED MATHEMATICS, 206, 211-214.
Titolo: | On the geodetic iteration number of the contour of a graph |
Autori: | |
Data di pubblicazione: | 2016 |
Rivista: | |
Citazione: | Mezzini, M. (2016). On the geodetic iteration number of the contour of a graph. DISCRETE APPLIED MATHEMATICS, 206, 211-214. |
Handle: | http://hdl.handle.net/11590/300868 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.