The 2D Discrete Gaussian model gives each height function (Formula presented.) a probability proportional to (Formula presented.), where (Formula presented.) is the inverse-temperature and (Formula presented.) sums over nearest-neighbor bonds. We consider the model at large fixed (Formula presented.), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an (Formula presented.) box with 0 boundary conditions concentrates on two integers M, M + 1 with (Formula presented.). The key is a large deviation estimate for the height at the origin in (Formula presented.), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on (Formula presented.) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where (Formula presented.). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order (Formula presented.). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.

Lubetzky, E., Martinelli, F., Sly, A. (2016). Harmonic Pinnacles in the Discrete Gaussian Model. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 344(3), 1-45 [10.1007/s00220-016-2628-5].

Harmonic Pinnacles in the Discrete Gaussian Model

MARTINELLI, Fabio;
2016-01-01

Abstract

The 2D Discrete Gaussian model gives each height function (Formula presented.) a probability proportional to (Formula presented.), where (Formula presented.) is the inverse-temperature and (Formula presented.) sums over nearest-neighbor bonds. We consider the model at large fixed (Formula presented.), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an (Formula presented.) box with 0 boundary conditions concentrates on two integers M, M + 1 with (Formula presented.). The key is a large deviation estimate for the height at the origin in (Formula presented.), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on (Formula presented.) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where (Formula presented.). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order (Formula presented.). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.
Lubetzky, E., Martinelli, F., Sly, A. (2016). Harmonic Pinnacles in the Discrete Gaussian Model. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 344(3), 1-45 [10.1007/s00220-016-2628-5].
File in questo prodotto:
File Dimensione Formato  
document (6).pdf

accesso aperto

Tipologia: Documento in Post-print
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/301179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact