Deterministic optimization algorithms are very attractive when the objective function is computation- ally expensive and therefore the statistical analysis of the optimization outcomes becomes too expensive. Among deterministic methods, deterministic particle swarm optimization (DPSO) has several attractive characteristics such as the simplicity of the heuristics, the ease of implementation, and its often fairly remarkable effectiveness. The performances of DPSO depend on four main setting parameters: the number of swarm particles, their initialization, the set of coefficients defining the swarm behavior, and (for box-constrained optimization) the method to handle the box constraints. Here, a parametric study of DPSO is presented, with application to simulation-based design in ship hydrodynamics. The objective is the identification of the most promising setup for both synchronous and asynchronous implementations of DPSO. The analysis is performed under the assumption of limited computational resources and large computational burden of the objective function evaluation. The analysis is conducted using 100 analytical test functions (with dimensionality from two to fifty) and three performance criteria, varying the swarm size, initialization, coefficients, and the method for the box constraints, resulting in more than 40,000 optimizations. The most promising setup is applied to the hull-form optimization of a high speed catamaran, for resistance reduction in calm water and at fixed speed, using a potential-flow solver.

Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M. (2016). Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. APPLIED SOFT COMPUTING, 49, 313-334 [10.1016/j.asoc.2016.08.028].

Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems

SERANI, ANDREA;IEMMA, Umberto;
2016-01-01

Abstract

Deterministic optimization algorithms are very attractive when the objective function is computation- ally expensive and therefore the statistical analysis of the optimization outcomes becomes too expensive. Among deterministic methods, deterministic particle swarm optimization (DPSO) has several attractive characteristics such as the simplicity of the heuristics, the ease of implementation, and its often fairly remarkable effectiveness. The performances of DPSO depend on four main setting parameters: the number of swarm particles, their initialization, the set of coefficients defining the swarm behavior, and (for box-constrained optimization) the method to handle the box constraints. Here, a parametric study of DPSO is presented, with application to simulation-based design in ship hydrodynamics. The objective is the identification of the most promising setup for both synchronous and asynchronous implementations of DPSO. The analysis is performed under the assumption of limited computational resources and large computational burden of the objective function evaluation. The analysis is conducted using 100 analytical test functions (with dimensionality from two to fifty) and three performance criteria, varying the swarm size, initialization, coefficients, and the method for the box constraints, resulting in more than 40,000 optimizations. The most promising setup is applied to the hull-form optimization of a high speed catamaran, for resistance reduction in calm water and at fixed speed, using a potential-flow solver.
2016
Serani, A., Leotardi, C., Iemma, U., Campana, E.F., Fasano, G., Diez, M. (2016). Parameter selection in synchronous and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. APPLIED SOFT COMPUTING, 49, 313-334 [10.1016/j.asoc.2016.08.028].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1568494616304227-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.15 MB
Formato Adobe PDF
6.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/303918
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 70
social impact