We prove that the space of radical ideals of a ring R, endowed with the hull-kernel topology, is a spectral space, and that it is canonically homeomorphic to the space of the non-empty Zariski closed subspaces of Spec(R), endowed with a Zariski-like topology.
Finocchiaro, C.A., Fontana, M., Spirito, D. (2016). A topological version of Hilbert's Nullstellensatz. JOURNAL OF ALGEBRA, 461, 25-41 [10.1016/j.jalgebra.2016.04.020].
A topological version of Hilbert's Nullstellensatz
FINOCCHIARO, CARMELO ANTONIO;FONTANA, Marco;SPIRITO, DARIO
2016-01-01
Abstract
We prove that the space of radical ideals of a ring R, endowed with the hull-kernel topology, is a spectral space, and that it is canonically homeomorphic to the space of the non-empty Zariski closed subspaces of Spec(R), endowed with a Zariski-like topology.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.