We prove that the space of radical ideals of a ring R, endowed with the hull-kernel topology, is a spectral space, and that it is canonically homeomorphic to the space of the non-empty Zariski closed subspaces of Spec(R), endowed with a Zariski-like topology.

Finocchiaro, C.A., Fontana, M., Spirito, D. (2016). A topological version of Hilbert's Nullstellensatz. JOURNAL OF ALGEBRA, 461, 25-41 [10.1016/j.jalgebra.2016.04.020].

A topological version of Hilbert's Nullstellensatz

FINOCCHIARO, CARMELO ANTONIO;FONTANA, Marco;SPIRITO, DARIO
2016-01-01

Abstract

We prove that the space of radical ideals of a ring R, endowed with the hull-kernel topology, is a spectral space, and that it is canonically homeomorphic to the space of the non-empty Zariski closed subspaces of Spec(R), endowed with a Zariski-like topology.
Finocchiaro, C.A., Fontana, M., Spirito, D. (2016). A topological version of Hilbert's Nullstellensatz. JOURNAL OF ALGEBRA, 461, 25-41 [10.1016/j.jalgebra.2016.04.020].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/304028
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact