A 3D nonlinear constitutive theory is proposed to describe the hysteretic response of non-functionalized carbon nanotube nanocomposite materials caused by the shear stick-slip between the carbon nanotubes and the polymer chains of the hosting matrix. The theory combines the mean-field homogenization method based on the Eshelby equivalent inclusion theory, the Mori–Tanaka homogenization approach, and the concept of inhomogeneous inclusions with inelastic eigenstrains introduced to describe the shear stick-slip. The evolution of this inelastic eigenstrain flow is regulated by a constitutive law based on a micromechanical adjustment of the von Mises function associated to the interfacial stress discontinuity. The 3D model is implemented in explicit dynamic form in a finite element platform called FEniCS. The time integration scheme utilises the Extended Average Mean Value Theorem together with a special form of the Impulse-Momentum Law. Parametric studies show that the predicted damping capacity of carbon nanotube nanocomposites made of epoxy or PEEK polymers is in agreement with previous results. Moreover, a validation of the proposed model is achieved comparing the experimentally obtained force-displacement cycles with the theoretical response of nanocomposite specimens.

Formica, G., Lacarbonara, W. (2016). Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites. INTERNATIONAL JOURNAL OF PLASTICITY, 88, 204-217 [10.1016/j.ijplas.2016.10.012].

Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites

FORMICA, GIOVANNI;
2016-01-01

Abstract

A 3D nonlinear constitutive theory is proposed to describe the hysteretic response of non-functionalized carbon nanotube nanocomposite materials caused by the shear stick-slip between the carbon nanotubes and the polymer chains of the hosting matrix. The theory combines the mean-field homogenization method based on the Eshelby equivalent inclusion theory, the Mori–Tanaka homogenization approach, and the concept of inhomogeneous inclusions with inelastic eigenstrains introduced to describe the shear stick-slip. The evolution of this inelastic eigenstrain flow is regulated by a constitutive law based on a micromechanical adjustment of the von Mises function associated to the interfacial stress discontinuity. The 3D model is implemented in explicit dynamic form in a finite element platform called FEniCS. The time integration scheme utilises the Extended Average Mean Value Theorem together with a special form of the Impulse-Momentum Law. Parametric studies show that the predicted damping capacity of carbon nanotube nanocomposites made of epoxy or PEEK polymers is in agreement with previous results. Moreover, a validation of the proposed model is achieved comparing the experimentally obtained force-displacement cycles with the theoretical response of nanocomposite specimens.
2016
Formica, G., Lacarbonara, W. (2016). Three-dimensional modeling of interfacial stick-slip in carbon nanotube nanocomposites. INTERNATIONAL JOURNAL OF PLASTICITY, 88, 204-217 [10.1016/j.ijplas.2016.10.012].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/310304
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 23
social impact