Any number may be written in many different ways, using different strings in different bases. In few, very special cases, a symmetry emerges which is usually hidden beneath the surface: 230164 and 164230 are both equal to 54284 in base ten. This article analyzes the solution set to the (constrained) Diophantine equation that implements such symmetry, culminating in a conjecture on the number of solutions of the equation.
Arnone, S., Falcolini, C., Moauro, F., & Siccardi, M. (2017). On Numbers in Different Bases: Symmetries and a Conjecture. EXPERIMENTAL MATHEMATICS, 26(2), 197-209 [10.1080/10586458.2016.1149125].
Titolo: | On Numbers in Different Bases: Symmetries and a Conjecture | |
Autori: | ||
Data di pubblicazione: | 2017 | |
Rivista: | ||
Citazione: | Arnone, S., Falcolini, C., Moauro, F., & Siccardi, M. (2017). On Numbers in Different Bases: Symmetries and a Conjecture. EXPERIMENTAL MATHEMATICS, 26(2), 197-209 [10.1080/10586458.2016.1149125]. | |
Handle: | http://hdl.handle.net/11590/311749 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.