One of the hallmarks of cancer consists in the ability of tumor cells to divide indefinitely, and to maintain stable telomere lengths throughout the activation of specific telomere maintenance mechanisms (TMM). Therefore in the last fifteen years, researchers proposed to target telomerase or telomeric structure in order to block limitless replicative potential of cancer cells providing a fascinating strategy for a broad-spectrum cancer therapy.In the present review, we report in vitro and in vivo evidence regarding the use of chemical agents targeting both telomerase or telomere structure and showing promising antitumor effects when used in combination with ionizing radiation (IR). RNA interference, antisense oligonucleotides (e.g., GRN163L), non-nucleoside inhibitors (e.g., BIBR1532) and nucleoside analogs (e.g., AZT) represent some of the most potent strategies to inhibit telomerase activity used in combination with IR. Furthermore, radiosensitizing effects were demonstrated also for agents acting directly on the telomeric structure such as G4-ligands (e.g., RHPS4 and Telomestatin) or telomeric-oligos (T-oligos). To date, some of these compounds are under clinical evaluation (e.g., GRN163L and KML001).Advantages of Telomere/Telomerase Targeting Compounds (T/TTCs) coupled with radiotherapy may be relevant in the treatment of radioresistant tumors and in the development of new optimized treatment plans with reduced dose adsorbed by patients and consequent attenuation of short- end long-term side effects. Pros and cons of possible future applications in cancer therapy based on the combination of T/TCCs and radiation treatment are discussed.

Berardinelli, F., Coluzzi, E., Sgura, A., Antoccia, A. (2017). Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH, 773, 204-219 [10.1016/j.mrrev.2017.02.004].

Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models

BERARDINELLI, FRANCESCO;COLUZZI, ELISA;SGURA, Antonella;ANTOCCIA, Antonio
2017-01-01

Abstract

One of the hallmarks of cancer consists in the ability of tumor cells to divide indefinitely, and to maintain stable telomere lengths throughout the activation of specific telomere maintenance mechanisms (TMM). Therefore in the last fifteen years, researchers proposed to target telomerase or telomeric structure in order to block limitless replicative potential of cancer cells providing a fascinating strategy for a broad-spectrum cancer therapy.In the present review, we report in vitro and in vivo evidence regarding the use of chemical agents targeting both telomerase or telomere structure and showing promising antitumor effects when used in combination with ionizing radiation (IR). RNA interference, antisense oligonucleotides (e.g., GRN163L), non-nucleoside inhibitors (e.g., BIBR1532) and nucleoside analogs (e.g., AZT) represent some of the most potent strategies to inhibit telomerase activity used in combination with IR. Furthermore, radiosensitizing effects were demonstrated also for agents acting directly on the telomeric structure such as G4-ligands (e.g., RHPS4 and Telomestatin) or telomeric-oligos (T-oligos). To date, some of these compounds are under clinical evaluation (e.g., GRN163L and KML001).Advantages of Telomere/Telomerase Targeting Compounds (T/TTCs) coupled with radiotherapy may be relevant in the treatment of radioresistant tumors and in the development of new optimized treatment plans with reduced dose adsorbed by patients and consequent attenuation of short- end long-term side effects. Pros and cons of possible future applications in cancer therapy based on the combination of T/TCCs and radiation treatment are discussed.
2017
Berardinelli, F., Coluzzi, E., Sgura, A., Antoccia, A. (2017). Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH, 773, 204-219 [10.1016/j.mrrev.2017.02.004].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/313733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact