Given finitely many non zero rational numbers which are not $pm1$, we prove, under the assumption of Hypothesis H of Schinzel, necessary and sufficient conditions for the existence of infinitely many primes modulo which all the given numbers are simultaneously primitive roots. A stronger result where the density of the primes in consideration was computed was proved under the assumption of the Generalized Riemann Hypothesis by K. Matthew in 1976.
Pappalardi, F., & Fouad, M.A.M. (2017). On simultaneous primitive roots. ACTA ARITHMETICA, 180(1), 35-43.
Titolo: | On simultaneous primitive roots |
Autori: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Citazione: | Pappalardi, F., & Fouad, M.A.M. (2017). On simultaneous primitive roots. ACTA ARITHMETICA, 180(1), 35-43. |
Handle: | http://hdl.handle.net/11590/315402 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.