Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energies by exploiting piezoelectric, triboelectric, and thermoelectric physical effects. In designing NGs, the end-user's comfort is a primary concern. Therefore, we focus on recently developed materials giving flexibility and stretchability to NGs. In addition, we summarize common fabrics for NG design. Finally, the mid-2020s market forecasts for these promising technologies highlight the potential for the commercialization of NGs because they may help contribute to the route of innovation for developing self-powered systems. The human body produces a huge amount of energy while performing daily activities. Harvesting this energy could represent a turning point for powering wearable devices.Advances in physical and chemical fields enable the design of flexible and stretchable materials that adhere to the surface of the body to follow the shape of the skin.Functional polymeric fibers allow the development of smart-clothes for harvesting the energy on the surface of the human body.
Proto, A., Penhaker, M., Conforto, S., Schmid, M. (2017). Nanogenerators for Human Body Energy Harvesting. TRENDS IN BIOTECHNOLOGY [10.1016/j.tibtech.2017.04.005].
Nanogenerators for Human Body Energy Harvesting
PROTO, ANTONINO;Penhaker, Marek;CONFORTO, SILVIA;SCHMID, Maurizio
2017-01-01
Abstract
Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energies by exploiting piezoelectric, triboelectric, and thermoelectric physical effects. In designing NGs, the end-user's comfort is a primary concern. Therefore, we focus on recently developed materials giving flexibility and stretchability to NGs. In addition, we summarize common fabrics for NG design. Finally, the mid-2020s market forecasts for these promising technologies highlight the potential for the commercialization of NGs because they may help contribute to the route of innovation for developing self-powered systems. The human body produces a huge amount of energy while performing daily activities. Harvesting this energy could represent a turning point for powering wearable devices.Advances in physical and chemical fields enable the design of flexible and stretchable materials that adhere to the surface of the body to follow the shape of the skin.Functional polymeric fibers allow the development of smart-clothes for harvesting the energy on the surface of the human body.File | Dimensione | Formato | |
---|---|---|---|
Final_Paper_BioTech.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
567.56 kB
Formato
Adobe PDF
|
567.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.